On the diffusion phenomenon of quasilinear hyperbolic waves
Journal article
Authors/Editors
Research Areas
No matching items found.
Publication Details
Author list: Yang H, Milani A
Publisher: Elsevier
Place: PARIS
Publication year: 2000
Journal: Bulletin des Sciences Mathématiques (0007-4497)
Journal acronym: B SCI MATH
Volume number: 124
Issue number: 5
Start page: 415
End page: 733
Number of pages: 319
ISSN: 0007-4497
Languages: English-Great Britain (EN-GB)
View in Web of Science | View citing articles in Web of Science
Abstract
We consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear dampingu(tt) + u(t) - div(a(del u)del u) = 0,and show that they tend, as t --> +infinity, to those of the nonlinear parabolic equationv(t) - div(a(del v)del v) = 0,in the sense that the norm \\ u(.,t) - v(.,t)\\(L infinity(Rn)) Of the difference u - v decays faster than that of either u or v. This provides another example of the diffusion phenomenon of nonlinear hyperbolic waves, first observed by L. Hsiao and Tai-ping Liu. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Keywords
asymptotic behavior of solutions, diffusion phenomenon, quasilinear hyperbolic and parabolic equations
Documents
No matching items found.