On the diffusion phenomenon of quasilinear hyperbolic waves

Journal article


Authors/Editors


Research Areas

No matching items found.


Publication Details

Author list: Yang H, Milani A

Publisher: Elsevier

Place: PARIS

Publication year: 2000

Journal: Bulletin des Sciences Mathématiques (0007-4497)

Journal acronym: B SCI MATH

Volume number: 124

Issue number: 5

Start page: 415

End page: 733

Number of pages: 319

ISSN: 0007-4497

Languages: English-Great Britain (EN-GB)


View in Web of Science | View citing articles in Web of Science


Abstract

We consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear dampingu(tt) + u(t) - div(a(del u)del u) = 0,and show that they tend, as t --> +infinity, to those of the nonlinear parabolic equationv(t) - div(a(del v)del v) = 0,in the sense that the norm \\ u(.,t) - v(.,t)\\(L infinity(Rn)) Of the difference u - v decays faster than that of either u or v. This provides another example of the diffusion phenomenon of nonlinear hyperbolic waves, first observed by L. Hsiao and Tai-ping Liu. (C) 2000 Editions scientifiques et medicales Elsevier SAS.


Keywords

asymptotic behavior of solutions, diffusion phenomenon, quasilinear hyperbolic and parabolic equations


Documents

No matching items found.


Last updated on 2023-31-07 at 00:46