Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects
Journal article
Authors/Editors
Research Areas
No matching items found.
Publication Details
Author list: Bansi CDK, Tabi CB, Motsumi TG, Mohamadou A
Publisher: Elsevier
Place: AMSTERDAM
Publication year: 2018
Journal: Journal of Magnetism and Magnetic Materials (0304-8853)
Journal acronym: J MAGN MAGN MATER
Volume number: 456
Start page: 38
End page: 45
Number of pages: 8
ISSN: 0304-8853
eISSN: 1873-4766
Languages: English-Great Britain (EN-GB)
View in Web of Science | View on publisher site | View citing articles in Web of Science
Abstract
A fractional model is proposed to study the effect of heat transfer and magnetic field on the blood flowing inside oscillatory arteries. The flow is due to periodic pressure gradient and the fractional model equations include body acceleration. The proposed velocity and temperature distribution equations are solved using the Laplace and Hankel transforms. The effect of the fluid parameters such as the Reynolds number (Re), the magnetic parameter (M) and the radiation parameter (N) is studied graphically with changing the fractional-order parameter. It is found that the fractional derivative is a valuable tool to control both the temperature and velocity of blood when flow parameters change under treatment, for example. Besides, this work highlights the fact that in the presence of strong magnetic field, blood velocity and temperature reduce. A reversed effect is observed where the applied thermal radiation increase; the velocity and temperature of blood increase. However, the temperature remains high around the artery centerline, which is appropriate during treatment to avoid tissues damage. (C) 2018 Elsevier B.V. All rights reserved.
Keywords
Blood flow, Fractional derivatives, Magnetic field, Magnetohydrodynamics, Thermal radiations
Documents
No matching items found.