Evaluation of energy efficient low carbon hydrogen production concepts based on glycerol residues from biodiesel production

Journal article


Authors / Editors


Research Areas

No matching items found.


Publication Details

Author list: Tasnacli-Asztalos Z, Agachi PS, Cormos CC

Publisher: Elsevier

Place: OXFORD

Publication year: 2015

Journal: International Journal of Hydrogen Energy (0360-3199)

Journal acronym: INT J HYDROGEN ENERG

Volume number: 40

Issue number: 22

Start page: 7017

End page: 7027

Number of pages: 11

ISSN: 0360-3199

Languages: English-Great Britain (EN-GB)


View in Web of Science | View on publisher site | View citing articles in Web of Science


Abstract

The need to develop energy efficient low carbon conversion processes is of critical importance today. Hydrogen production concepts using glycerol resulted as byproduct from biodiesel production, at industrial scale (100,000 Nm(3)/h hydrogen equivalent to 300 MWth), with and without carbon capture was evaluated in the present paper. Three hydrogen production routes based on glycerol processing with carbon capture were investigated: the first two concepts are based on glycerol steam and autothermal catalytic reforming coupled with gas liquid absorption for carbon capture. The third concept is based on innovative energy-efficient chemical looping cycle using ilmenite as oxygen carrier. Similar designs without carbon capture have been developed for glycerol autothermal and steam reforming to quantify the energy penalty for carbon capture. The assessments show that chemical looping is by far the most promising option in terms of overall energy efficiency (higher than 72%) and carbon capture rate (higher than 97%). Reforming-based glycerol processing concepts with CO2 capture based on gas liquid absorption have significantly lower energy efficiency (55-65%) and carbon capture rate (57-70%). Among evaluated reforming technologies, steam conversion performs better than autothermal option. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.


Keywords

Carbon Capture and Storage (CCS), Chemical looping, Glycerol processing, Hydrogen production


Documents

No matching items found.


Last updated on 2021-07-05 at 03:58